Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps

نویسندگان

  • Maciej Jaskowski
  • Jakub Swiatkowski
  • Michal Zajac
  • Maciej Klimek
  • Jarek Potiuk
  • Piotr Rybicki
  • Piotr Polatowski
  • Przemyslaw Walczyk
  • Kacper Nowicki
  • Marek Cygan
چکیده

Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset [15].We propose a new architecture for the GQ-CNN and describe practical improvements that increase the model validation accuracy from 92.2% to 95.8% and from 85.9% to 88.0% on respectively image-wise and object-wise training and validation splits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics

To reduce data collection time for deep learning of robust robotic grasp plans, we explore training from a synthetic dataset of 6.7 million point clouds, grasps, and robust analytic grasp metrics generated from thousands of 3D models from DexNet 1.0 in randomized poses on a table. We use the resulting dataset, Dex-Net 2.0, to train a Grasp Quality Convolutional Neural Network (GQ-CNN) model tha...

متن کامل

Dex-Net 3.0: Computing Robust Robot Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning

Suction-based end effectors are widely used in industry and are often preferred over parallel-jaw and multifinger grippers due to their ability to lift objects with a single point of contact. This ability simplifies planning, and handcoded heuristics such as targeting planar surfaces are often used to select suction grasps based on point cloud data. In this paper, we propose a compliant suction...

متن کامل

6DOF Grasp Planning by Optimizing a Deep Learning Scoring Function

Learning deep networks from large simulation datasets is a promising approach for robot grasping, but previous work has so far been limited to the simplified problem of overhead, parallel-jaw grasps. This paper considers learning grasps in the full 6D position and orientation pose space for non-parallel-jaw grippers. We generate a database of millions of simulated successful and unsuccessful gr...

متن کامل

Factored Deep Convolutional Neural Networks for Noise Robust Speech Recognition

In this paper, we present a framework of a factored deep convolutional neural network (CNN) learning for noise robust automatic speech recognition (ASR). Deep CNN architecture, which has attracted great attention in various research areas, has also been successfully applied to ASR. However, to ensure noise robustness, since merely introducing deep CNN architecture into the acoustic modeling of ...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05992  شماره 

صفحات  -

تاریخ انتشار 2018